Date
Table of Contents

There are some discrepancies between the results here and the paper. But the results are basically the same.

Rotation Gates

This part corresond to the Gates in paper 0301052v2.

$$S_{ab}=\frac{1+Z_a}{2}+\frac{1-Z_a}{2}Z_b=U_a+D_aZ_b$$

The \(u_i, d_i\) are defined by \(\ket{\psi_i}=u_i\ket{0_i}+d_i\ket{1_i}\). And we have \(Z_b\ket{+_b}=\ket{-_b}\)

$$\begin{aligned} \mathcal{R}&=\bra{\psi_1}\bra{\psi_2}\bra{\psi_3}\bra{\psi_4}S_{12}S_{23}S_{34}S_{45}\ket{+_2}\ket{+_3}\ket{+_4}\ket{+_5}\\ &=\left(\ket{+_5}\bra{\psi_4}U_4+\ket{-_5}\bra{\psi_4}D_4\right) \bra{\psi_1}\bra{\psi_2}\bra{\psi_3}S_{12}S_{23}S_{34}\ket{+_2}\ket{+_3}\ket{+_4}\\ &=\prod_{i=4}^1 \Big(\ket{+_{i+1}}\bra{0_i}u_i+\ket{-_{i+1}}\bra{1_i}d_i\Big)\\ &=\prod_{i=4}^1 {\frac{1}{\sqrt{2}}\begin{bmatrix}u_i & d_i\\-u_i & -d_i\end{bmatrix}}=\prod_{i=4}^1 H\begin{bmatrix}u_i & \\ & d_i\end{bmatrix}\\ &=\prod_{i=4}^1 H\mathcal{Z}_{\phi_i},\quad \mathcal{Z}_\phi=\exp(-\ii \phi Z/2)\\ &=(H\mathcal{Z}_\zeta H)\mathcal{Z}_\eta (H\mathcal{Z}_\xi H)\\ &=\mathcal{X}_\zeta\mathcal{Z}_\eta\mathcal{X}_\xi\end{aligned}$$

In the basis of \(Z_1\rightarrow Z_5\). If all measurement results \(\psi_i\) are positive for directions \((0, \xi,\eta,\zeta)\), respectively, we can verify that the rotation matrix \(\mathcal{R}\) is equivalent to \(\exp(-\ii \zeta X/2)\exp(-\ii \eta Z/2)\exp(-\ii \xi X/2)\). Hadamard gate is simply a special case.

CNOT Gates

This part corresponds to PRL.86.5188(Page 3, upper left corner), so we are using a different \(S\):

$$S_{ab}=1-\frac{(1+Z_{a})(1-Z_{b})}{2}=D_a+U_aZ_b=U_b-D_bZ_a$$

So

$$S_{ab}S_{bc}=\frac{Z_c-Z_a}{2}+\frac{Z_c+Z_a}{2}Z_b=U_bZ_c-D_bZ_a$$
$$\begin{aligned} \mathcal{C}&=\bra{\psi_1}\bra{\psi_2}S_{12}S_{23}S_{24}\ket{+_2}\ket{+_3}\\ &=\Big(\ket{+_{3}}\bra{1_2}d_2+\ket{-_3}\bra{0_2}u_2\Big)\bra{\psi_1}S_{12}S_{24}\ket{+_2}\\ &=\Big(\ket{+_{3}}\bra{1_2}d_2+\ket{-_3}\bra{0_2}u_2\Big)\bra{\psi_1}U_2Z_4-D_2Z_1\ket{+_2}\\ &=\Big(\pm_2\ket{+_{3}}\bra{1_2}+\ket{-_3}\bra{0_2}\Big)\Big(\ket{0_2}\bra{\psi_1}Z_4-\ket{1_2}\bra{\psi_1}Z_1\Big)/2\\ &=\Big( \mp_2\ket{+_{3}}\bra{\mp_1}+\ket{-_3}\bra{\pm_1}Z_4\Big)/2 \\\end{aligned}$$

If \(s_1=1, s_2=1\), then \(\mathcal{C}_n=\ket{-_{3}}\bra{-_1}Z_4+\ket{+_3}\bra{+_1}I_4\)

$$\mathcal{C}=I_4\otimes\begin{bmatrix} 1& 1\\ 1& 1 \end{bmatrix}+Z_4\otimes\begin{bmatrix} 1& -1\\ -1& 1 \end{bmatrix}=\begin{bmatrix} 1& &&\\ & 1&&\\ &&&1\\ &&1&\\ \end{bmatrix}$$

In the basis of \(Z_4\otimes Z_1\rightarrow Z_4\otimes Z_3\)


Comments

comments powered by Disqus